紧线器厂家
免费服务热线

Free service

hotline

010-00000000
紧线器厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

工程师热设计中的注意事项

发布时间:2020-07-21 18:32:57 阅读: 来源:紧线器厂家

如果假设电流过载严重,但该部位散热极好,能把温升控制在很低的范围内,是不是器件就不会失效了呢?答案为“是”。由此可见,如果想把产品的可靠性做高,一方面使设备和零部件的耐高温特性提高,能承受较大的热应力(因为环境温度或过载等引起均可);另一方面是加强散热,使环境温度和过载引起的热量全部散掉,产品可靠性一样可以提高。下面介绍下热设计的常规方法。

本文引用地址:我们机电设备常见的是散热方式是散热片和风扇两种散热方式,有时散热的程度不够,有时又过度散热了,那么何时应该散热,哪种方式散热最合适呢?这可以依据热流密度来*估,热流密度=热量 / 热通道面积。

按照《GJB/Z27-92电子设备可靠性热设计手册》的规定(如图1),根据可接受的温升的要求和计算出的热流密度,得出可接受的散热方法。如温升40℃(纵轴),热流密度0.04W/cm2(横轴),按下图找到交叉点,落在自然冷却区内,得出自然对流和辐射即可满足设计要求。

大部分热设计适用于上面这个图表,因为基本上散热都是通过面散热。但对于密封设备,则应该用体积功率密度来估算,热功率密度=热量 / 体积。下图(图2)是温升要求不超过40℃时,不同体积功率密度所对应的散热方式。比如某电源调整芯片,热耗为0.01W,体积为0.125cm3,体积功率密度=0.1/0.125=0.08W/cm3,查下图得出金属传导冷却可满足要求。

按照上图,可以得出冷却方法的选择顺序:自然冷却一导热一强迫风冷一液冷一蒸发冷却。体积功率密度低于0.122W/cm3传导、辐射、自然对流等方法冷却;0.122-0.43W/cm3强迫风冷;0.43~O.6W/cm3液冷;大于0.6W/cm3蒸发冷却。注意这是温升要求40℃时的推荐参考值,如果温升要求低于40℃,就需要对散热方式降额使用,0.122时就需要选择强迫风冷,如果要求温升很低,甚至要选择液冷或蒸发冷却了。

这里面还应注意一个问题,是不是强迫风冷能满足散热要求,我们就可以随便选择风扇转速呢,就好像说某件工作,专科学历的知识水平即可胜任,是不是随便抓个大专生就能做好呢,当然不是,风扇的转速与气流流速有直接关系,这里又涉及一个新概念——热阻。

热阻=温度差 / 热耗 (单位℃/W)

热阻越小则导热性能越好,这个概念等同于电阻,两端的温度差类似于电压,传导的热量类似于电流。风道的热阻涉及流体力学的一些计算,如果我们在热设计方面要求不是很苛刻,可通过估算或实验得出,如果要求很苛刻,可以查阅《GJB/Z27-92 电子设备可靠性热设计手册》,里面有很多系数、假设条件的组合,三言两语说不清楚,个别系数我也没搞明白如何与现实的风道设计结合,比如,风道中有一束电缆、风道的壁不是均匀的金属板,而是有高低不平带器件的电路板,对一些系数则只能估算了,最准确的方式反而是实验测量了。

热阻更多的是用于散热器的选择,一般厂家都能提供这个参数。举例,芯片功耗20W,芯片表面不能超过85℃,最高环境温度55℃,计算所需散热器的热阻R。

计算:实际散热器与芯片之间的热阻近似为0.1℃/W,则(R+0.1)=(85-55) ℃/20W,则R=1.4℃/W。依据这个数值选散热器就可以了。

这里面注意一个问题,我们在计算中默认为热耗≈芯片功率,对一般的芯片,我们都可以这样估算,因为芯片中没有驱动机构,没有其他的能量转换机会,大部分是通过热量转化掉了。而对于电源转换类芯片或模块,则不可以这样算,比如电源,它是一个能源输出,它的输入电量一部分转化成了热,另外很大部分转化成电能输出了,这时候就不能认为热耗≈功率。

以上部分是定量设计部分的内容,在有了一个定量的设计指导后,也有一些具体的工程技巧来帮助实现理论计算结果的要求。 一般的热设计思路有三个措施:降耗、导热、布局。

降耗是不让热量产生;导热是把热量导走不产生影响;布局是热也没散掉但通过措施隔离热敏感器件;有点类似于电磁兼容方面针对发射源、传播路径、敏感设备的三个措施。

降耗是最原始最根本的解决方式,降额和低功耗的设计方案是两个主要途径,低功耗的方案需要结合具体的设计进行分析,不予赘述。器件选型时尽量选用发热小的元器件,如片状电阻、线绕电阻(少用碳膜电阻);独石电容、钽电容(少用纸介电容);MOS、CMOS电路(少用锗管);指示灯采用发光二极管或液晶屏 (少用白炽灯),表面安装器件等。除了选择低功耗器件外,对一些温度敏感的特型元件进行温度补偿与控制也是解决问题的办法之一,尤其是放大电路的电容电阻等定量测量关键器件。

降额是最需要考虑的降耗方式,假设一根细导线,标称能通过10A的电流,电流在其上产生的热量就较多,把导线加粗,增大余量,标称通过20A的电流,则同样都是通过10A电流时,因为内阻产生的热损耗就会减小,热量就小。而且因为降额,在环境温度升高时,器件性能下降情况下,但因为有余量,即使性能下降,也能满足要求,这是降额对于增强可靠性的另一个作用,将是另一篇博客文章的内容。

导热的设计规范比较多,挑一些比较常见的罗列:

1.进风口和出风口之间的通风路径须经过整个散热通道,一般进风口在机箱下侧方角上,出风口在机箱上方与其最远离的对称角上;

2.避免将通风孔及排风孔开在机箱顶部朝上或面板上;

3.为防止气流回流,进口风道的横截面积应大于各分支风道截面积之和;

4.对靠近热源的热敏元件,采用物理隔离法或绝热法进行热屏蔽。热屏蔽材料有:石棉板、硅橡胶、泡沫塑料、环氧玻璃纤维板,也可用金属板和浇渗金属膜的陶瓷;

5.将散热》1w的零件安装在机座上,利用底板做为该器件的散热器,前提是机座为金属导热材料;

6.热管安装在热源上方且管与水平面夹角须》30度;

B用多层板结构(对EMC也有非常非常大的好处),使电源线或地线在电路板的最上层或最下层…

8.热源器件专门设计在一个印制板上,并密封、隔离、接地和进行散热处理;

西安牙齿矫正

杭州植发医院

济南热玛吉价格